

fibers: lightweight concurrent multitasking

Overview

Fibers are lightweight primitives for cooperative multitasking in Python. They
provide means for running pieces of code that can be paused and resumed. Unlike
threads, which are preemptively scheduled, fibers are scheduled cooperatively,
that is, only one fiber will be running at a given point in time, and no other
fiber will run until the user explicitly decides so.

When a fiber is created it will not run automatically. A fiber must be ‘switched’
into for it to run. Fibers can switch control to other fibers by way of the switch
or throw functions, which switch control or raise and exception in the target
fiber respectively.

Motivation

I started this project mainly because I wanted a slightly different API from
what greenlet offers. After playing with the code a bit I decided to make more
changes and fibers became what it is today.

“Why not just fork greenlet and make the changes?” you probably wonder. Since
I wanted to make some fundamental changes to the API changes were going to be big
and since I was there I thought I may as well use the stack switching implementation
used by PyPy, which has some advantages over the current one used in greenlet.

For the curious, I made a list of differences between fibers and greenlet here,
see Why fibers.

API

The fibers module exports two objects, the Fiber type and the error object.

	
class fibers.Fiber([target[, args[, kwargs[, parent]]]])

	
	Parameters

	
	target (callable) – callable which this fiber will execute when switched to.

	args (tuple) – tuple of arguments which the specified target callable will
get passed.

	kwargs (dict) – dictionary of keyword arguments the specified callable
will get passed.

	parent (Fiber) – parent fiber for this object. If not specified, the current one
will be used.

Fiber objects are lightweight microthreads which are cooperatively scheduled.
Only one can run at a given time and the switch and/or throw functions
must be used to switch execution from one fiber to another.

The first time a fiber is switched into, the specified callable will be called
with the given arguments and keyword arguments.

def runner(*args, **kwargs):
 return 42

f = Fiber(target=runner, args=(1, 2, 3), kwargs={'foo': 123}
f.switch()

When f.switch() is called the runner function will be executed, with the
given positional and keyword arguments.

	
switch([value])

	
	Parameters

	value (object) – Arbitrary object which will be returned to the fiber
which called switch on this fiber before. A value can only specified
if the fiber has already been started. In order to start a fiber, this
function must be called without a value.

Suspend the current running fiber and switch execution to the target fiber.
If a value is specified, the fiber which previously called switch() will
appear to return the value specified here.

	
throw(typ[, val[, tb]])

	
	Parameters

	
	typ (type) – Exception type to be raised.

	val (object) – Exception instance value to be raised.

	tb (traceback) – Traceback object.

Suspend the current running fiber and switch execution to the target fiber,
raising the specified exception immediately. The fiber which is resumed will
get the exception raised, and if it’s not caught it will be propagated to
the parent.

	
is_alive()

	Returns True if the fiber hasn’t ended yet, False if it has already ended.

	
classmethod current()

	Returns the current Fiber object.

	
exception fibers.error

	Exception raised by this module when an error such as trying to switch to a fiber
in a different thread occurs.

	
fibers.current()

	Returns the current Fiber object.

Parents

Fibers are organized in a tree form. Each native Python thread has a fibers tree,
which is initialized the first time a fiber is created. When a fiber is created
the user can select what the parent fiber will be. When that fiber finishes
execution, control will be switched to the parent.

Multi-threading

There is no multithreading support, that is, a fiber in one thread cannot switch
control to a fiber in a different thread, this will raise an exception. Likewise,
a fiber cannot get assigned a parent which belongs to a different thread.

Note: a fiber is bound to the thread where it was created, and this cannot be
changed.

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 f

 		 	

 		
 f	

 	
 	
 fibers	

Index

 C
 | E
 | F
 | I
 | S
 | T

C

 	
 	current() (fibers.Fiber class method)

 	(in module fibers)

E

 	
 	error

F

 	
 	Fiber (class in fibers)

 	
 	fibers (module)

I

 	
 	is_alive() (fibers.Fiber method)

S

 	
 	switch() (fibers.Fiber method)

T

 	
 	throw() (fibers.Fiber method)

Why fibers

Fibers was created because I wanted to implement an API which looked pretty much
like a thread but with greenlet, but the API offered by greenlet got in the way,
so I decided to try and extract the minimum ammount of funcionality I needed and
make the API I wanted to use.

Note the use of the first person singular here, this was created for myself, I’m
sharing it because it may also help others. If this helped you, let me know, I’d
like to hear your use case!

Early binding

This was the first thing I wanted to change. In greenlet, the target function can
be specified in __init__ but it can be changed later (before the greenlet is
switched to for the first time) and arguments (and keyword arguments) must be passed
to switch. I wanted to ‘bind’ the callable and arguments as early as possible
(in __init__, actually) pretty much like threads do.

With greenlet

def run(*args, **kwargs):
 print args
 print kwargs

g = greenlet(run)
g.switch(1, 2, 3, foo='bar')

With fibers

def run(*args, **kwargs):
 print args
 print kwargs

f = Fiber(target=run, args=(1, 2, 3), kwargs={'foo':'bar'})
f.switch()

This is a bigger change than it seems, because it also means that switch only
gets one argument, which is what the called will get. In greenlet the caller may
get a tuple, a dictionary or a tuple containing another tuple and a dictionary,
depending on the values passed to switch.

Graceful failures

Greenlet tends to be quite graceful with failures, which may lead to unexpected
behavior.

With greenlet

def run():
 return 42

g = greenlet(run)
res = g.switch()
res is 42
res = g.switch()
res is the empty tuple

With fibers

def run():
 return 42

f = Fiber(run)
res = f.switch()
res is 42
res = f.switch()
raises fiibers.error exception because f has ended

Garbage collection magic

This is a tricky one. When greenlets are garbage collected, they are switched into
(if they where running) and GreenletExit exception is raised in them. This means
that if the code caught this exception, it could resurrect the object.

In fibers, on the contrary, this doesn’t happen and if a fiber is gc’d while alive,
it’s not switched into and no exception is raised in it.

This means that the programmer needs to take care and throw into the fibers which
he/she wishes to kill. It may look like a burden at a first sight, but I believe
it’s for the best.

Stack slicing implementation

I’ll be honest: I’m not smart enough to write the assembly code required to
perform the actual stack slicing for the different platforms. That’s why I stand
on the shoulders of giants, in this case, I leveraged the tiny stacklet library
hidden inside PyPy, which is used to implement continuations, as well as
the greenlet module (in PyPy, that is).

Stacklet implements save, restore and stack switch operations in assembly, which
compilers won’t touch, so there should be no issues regardless of the optimizations
used and the ‘smartness’ of the compiler. The greenlet implementation, on the other
hand, only implements the stack switch operation in assembly, and workarounds have
been needed every now and then, as compilers have become ‘smarter’.

On a personal note, using a library such as stacklet makes the code look simpler,
since fibers is a wrapper over it with a cherry on top, and all the scary bits are
hidden inside the library itself.

 nav.xhtml

 Table of Contents

 		
 fibers: lightweight concurrent multitasking

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

